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Abstract In this study, using complete orthonormal sets
of Ya-ETOs (where a=1, 0, �1, �2, ...)introduced by the
author, a large number of series expansion formulae for
the multicenter electronic attraction (EA), electric field
(EF) and electric field gradient (EFG) integrals of the
Yukawa-like screened Coulomb potentials (SCPs) is
presented through the new central and noncentral poten-
tials and the overlap integrals with the same screening
constants. The final results obtained are valid for arbitrary
locations of STOs and their parameters.

Keywords Screened Coulomb potentials · Multicenter
electric field integrals · Multicenter electric field gradient
integrals · Central and noncentral potential functions

Introduction

For many years there has been considerable interest in
calculating the multicenter EA, EF and EFG integrals of
Yukawa-like screened Coulomb potentials. These poten-
tials are important in several contexts. For example, the
Yukawa potential may be used to approximate the
potential experienced by electrons in an atom of a
molecule where the remaining electrons screen the
nuclear charge. It describes the shielding effect in
plasmas, where it is called the Debye–H�ckel potential,
and is known as the Thomas–Fermi potential in solid-state
physics [1]. This potential is also important in studying
hydrogen under pressure [2, 3, 4]. Therefore, it is
desirable to have available as many different representa-
tions for the Yukawa potential as possible.

It is well known that there is a large body of existing
formulae for expansion methods for STOs about a
displaced center [5, 6, 7, 8], the Gaussian transform

method [9], the Fourier transform method [10, 11, 12], the
B-function method [13, 14] then also, new methods [15,
16, 17, 18, 19, 20, 21, 22] developed for the evaluation of
multicenter molecular integrals of nonscreened potentials
do not generally apply to screened Coulomb potentials. In
previous papers, we have presented a method for obtain-
ing the translation formula for STOs [23] by the use of
complete orthonormal set of lambda ETOs introduced in
[24, 25, 26] (see Eqs. 1 and 2 of [27] for a=0). These have
been used for the evaluation of multicenter integrals of
nonscreened potentials.

The aim of this article is to obtain different expressions
for the multicenter EA, EF and EFG integrals with the
Yukawa-like screened Coulomb potentials by the use of
complete orthonormal sets of ya-ETOs.

Definitions and basic formulae

For the purpose of evaluating the multicenter integrals
with the Yukawa-like screened Coulomb potentials
required for the study of the electric field induced within
a molecule by its electrons, the following integrals must
be solved:

EA integrals of SCPs:

Upp0 z; z0; h;~Rca;~Rab

� �

¼
Z

c�p z;~ra1ð Þcp0 z
0;~rc1ð ÞO h; rb1ð Þ dV1 ð1Þ

EF integrals of SCPs:

Ui
pp0 z; z0; h;~Rca;~Rab

� �

¼
Z

c�p z;~ra1ð Þcp0 z
0;~rc1ð ÞOi h;~rb1ð Þ dV1 ð2Þ

EFG integrals of SCPs:

Uij
pp0 z; z0; h;~Rca;~Rab

� �

¼
Z

c�p z;~ra1ð Þcp0 z
0;~rc1ð ÞOij h;~rb1ð Þ dV1 ð3Þ
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where h>0, i,j=1,�1,0; p=nlm, p0=n0l0m0, ~Rca ¼
~rc1 �~ra1;~Rab ¼~ra1 �~rb1 and

O h; rb1ð Þ ¼ e�h rb1

rb1
ð4Þ

Oi h;~rb1ð Þ ¼ @

@Xi
O h; rb1ð Þ ¼ xi

b1

r3
b1

1þ hrb1ð Þe�hrb1 ð5Þ

Oij h;~rb1ð Þ ¼ @

@Xi@Xj
O h; rb1ð Þ

¼ 3xi
b1xj

b1 � dijr2
b1

r5
b1

1þ hrb1 þ
h2

3
r2

b1

� �
e�hrb1

þ h2e�hrb1

3rb1
dij �

4p
3

dijd ~rb1ð Þ ð6Þ

Here x1=x, x�1=y, x0=z and X1=X, X �1=Y, X0=Z are the
Cartesian coordinates of the electron and nucleus b,
respectively; d ~rð Þis the Dirac delta function. The normal-
ized complex or real STOs containing in Eqs. (1), (2) and
(3) are given by

cnlm z;~rð Þ ¼ Rn z; rð ÞSlm q;jð Þ ð7Þ

Rn z; rð Þ ¼ 2zð Þnþ1=2 2nð Þ!½ ��1=2rn�1e�zr ð8Þ
We note that the definition of phases in this work for

the complex spherical harmonics (Y*
lm=Yl�m, where

Slm=Ylm differs from the Condon–Shortley phases [28]
by the sign factor (�1)m.

The Yukawa-like screened Coulomb potential, Eq. (4),
satisfies the modified Helmholtz equation: [29]

O11 h;~rð Þ þ O�1�1 h;~rð Þ þ O00 h;~rð Þ � h2O h; rð Þ

¼ @2

@x2
þ @2

@y2
þ @2

@z2
� h2

� �
e�h r

r
¼ �4pd ~rð Þ ð9Þ

Since this equation is one of the important partial
differential equations of mathematical physics, it is not
surprising that the Yukawa and Yukawa-like screened
Coulomb potentials are useful in various branches of
science.

Now we express the operators O h; rb1ð Þ; Oi h;~rb1ð Þ
and Oij h;~rb1ð Þ in terms of screening central and non-
central potentials introduced in [30]:

fuus h; r!
� �

¼ fu h; rð Þ�Sus q; jð Þ ð10Þ

fu h;~rð Þ ¼ fu00 h;~rð Þ ¼ rn�1e�hr ð11Þ
where u��v and

�Susðq; jÞ ¼
4p

2uþ 1

� �1=2

Susðq; jÞ

Taking into account Eqs. (10) and (11) in Eqs. (4), (5)
and (6) we obtain:

O h; rð Þ ¼ f000 h; rð Þ ð12Þ

Oi h;~rð Þ ¼ f�11i h;~rð Þ þ hf01i h;~rð Þ ð13Þ

Oii h;~rð Þ ¼ 1þ di0ð Þ � �1ð Þif�220 h;~rð Þ þ i
ffiffiffi
3
p

f�222 h;~rð Þ
h in

þh �1ð Þif�120 h;~rð Þ þ i
ffiffiffi
3
p

f�122 h;~rð Þ
h i

þ h2

3
�1ð Þif020 h;~rð Þ þ i

ffiffiffi
3
p

f022 h;~rð Þ
h i

g

þ h2

3
f000 h; rð Þ � 4p

3
d ~rð Þ ð14Þ

and for i 6¼j

Oij h;~rð Þ ¼ 1
ffiffiffi
3
p f�22s h;~rð Þ þ hf�12s h;~rð Þ þ h2

3
f02s h; rð Þ

� �

ð15Þ
where s=i for i=€1, j=0 or s=j for i=0, j=€1 and s=�2 for
i=1, j=�1 or i=�1, j=1.

In order to evaluate the multicenter EA, EF and EFG
integrals, Eqs. (1), (2) and (3), we shall use here Eq. (11)
of [30] for the one-center expansion of the potentials in
terms of STOs for h0=z:

fuus h;~rð Þ ¼
ffiffiffiffiffi
4p
p

lim
N!1

XN

u0¼uþ1

baN
uu;u0u h; zð Þcu0us z;~rð Þ ð16Þ

where a=1, 0, �1, �2, ... and

baN
uu;u0u h; zð Þ ¼ 1

2uþ 1

� �1=2 XN

u00¼uþ1

Wau
u0u00 Nð ÞPa

uu00 h; zð Þ

(17)

Pa
uu00 h; zð Þ ¼ uþ u00 � að Þ!

2 u00 � að Þð Þ!½ �1=2 hþ zð Þuþ1=2

2z

hþ z

� �u00�aþ1=2

(18)

Expressions in terms of basic integrals

We first make use of the following expansion formulae
for the electron charge density, [30] i.e.:

cp z;~ra1ð Þc�p0 z
0;~rc1ð Þ

¼ 1
ffiffiffiffiffi
4p
p lim

N!1

XN

m¼1

Xm�1

n¼0

Xn

s¼�n
WaN

pp0q z; z0; z; R
!

ca; R
!

ab

� 	
cq z;~rb1ð Þ

(19)

cp z;~ra1ð Þc�p0 z
0;~rc1ð Þ

¼ 1
ffiffiffiffiffi
4p
p lim

N!1

XN

m¼1

Xm�1

n¼0

Xn

s¼�n
WaN

pp0q z; z0; z; R
!

ca; 0
� 	

cq z;~ra1ð Þ

(20)
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where a=1,0,�1,�2,..., z=z+z0 and q=mns. The quantities

WaN
pp0q
�
z; z0; z; R

!
ca; R
!

ab

�
and WaN

pp0q
�
z; z0; z; R

!
ca; 0

�
are the

three- and two-center charge-density expansion coeffi-
cients defined by

WaN
pp0q z; z0; z;~Rca;~Rab

� �

¼ lim
N0!1

XN0

m0¼0

Xm0�1

n0¼0

Xn0

s0¼�n0
V�aN0

p0q0 z0; z0;~Rca

� �

�WaN
pq0q z; z0; z; 0;~Rab

� �
ð21Þ

WaN
pp0q z; z0; z; 0;~Rab

� �

¼
Xm0�1

n0¼0

Xn0

s0¼�n0
Wpp0q0 z; z

0; zð ÞVaN
q0q z; z;~Rab

� �
ð22Þ

and

WaN
pp0q z; z0; z;~Rca; 0
� �

¼
Xm0�1

n0¼0

Xn0

s0¼�n0
Wpq0q z; z0; zð ÞV�aN

p0q0 z0; z0;~Rca

� �
ð23Þ

Here Wpp0q(z,z0;z) and VaN
qq0
�
z; z; R
!

ab

�
are the electron

charge density expansion coefficients for the one-center
case and the translation coefficients for STOs (see [30]).
We note that the coefficients VaN

q0q are determined by
the use of overlap integrals with the same screen-
ing parameters. Substituting the charge densities
cp z;~ra1ð Þc�

p0 z
0;~rc1ð Þ in Eqs. (1), (2) and (3) by their

expressions in terms of STOs, namely, Eqs. (19) and (20),
we get the following relations in terms of one- and two-
center basic integrals:

Upp0 z; z0; h;~Rca;~Rab

� �

¼ lim
N!1

XN

m¼1

Xm�1

n¼0

Xn

s¼�n
WaN

pp0q z; z0; z;~Rca;~Rab

� �
Jq z; hð Þ

(24)

Ui
pp0 z; z0; h; R

!
ca; R
!

ab

� 	

¼ lim
N!1

XN

m¼1

Xm�1

n¼0

Xn

s¼�n
WaN

pp0q
�
z; z0; z; R

!
ca; R
!

ab

�
Ji

q z; hð Þ

(25)

Uij
pp0 z; z0; h;~Rca;~Rab

� �

¼ lim
N!1

XN

m¼1

Xm�1

n¼0

Xn

s¼�n
WaN

pp0q z; z0; z;~Rca;~Rab

� �
Jij

q z; hð Þ

(26)
and

Upp0 z; z0; h;~Rca;~Rab

� �

¼ lim
N!1

XN

m¼1

Xm�1

n¼0

Xn

s¼�n
WaN

pp0q z; z0; z;~Rca; 0
� �

Jq z; h;~Rab

� �

(27)

Ui
pp0 z; z0; h;~Rca;~Rab

� �

¼ lim
N!1

XN

m¼1

Xm�1

n¼0

Xn

s¼�n
WaN

pp0q z; z0; z;~Rca; 0
� �

Ji
q z; h;~Rab

� �

(28)

Uij
pp0 z; z0; h;~Rca;~Rab

� �

¼ lim
N!1

XN

m¼1

Xm�1

n¼0

Xn

s¼�n
WaN

pp0q z; z0; z;~Rca; 0
� �

Jij
q z; h;~Rab

� �

(29)

The basic integrals in these equations are determined by
One-center integrals

Jq z; hð Þ ¼ 1
ffiffiffiffiffi
4p
p

Z
c�q z;~r1ð ÞO h; r1ð Þ dV1 ð30Þ

Ji
q z; hð Þ ¼ 1

ffiffiffiffiffi
4p
p

Z
c�q z;~r1ð ÞOi h;~r1ð Þ dV1 ð31Þ

Jij
q z; hð Þ ¼ 1

ffiffiffiffiffi
4p
p

Z
c�q z;~r1ð ÞOij h;~r1ð Þ dV1 ð32Þ

and
Two-center integrals

Jq z; h;~R
� �

¼ 1
ffiffiffiffiffi
4p
p

Z
c�q z;~ra1ð ÞO h; rb1ð Þ dV1 ð33Þ

Ji
q z; h;~R
� �

¼ 1
ffiffiffiffiffi
4p
p

Z
c�q z;~ra1ð ÞOi h;~rb1ð Þ dV1 ð34Þ

Jij
q z; h;~R
� �

¼ 1
ffiffiffiffiffi
4p
p

Z
c�q z;~ra1ð ÞOij h;~rb1ð Þ dV1 ð35Þ

where ~R ¼ ~Rab.
With the evaluation of integrals (30), (31) and (32) we

use the expansion formulae (12), (13), (14) and (15) for
the operators in terms of potential functions. Then we find
finally for the one-center basic integrals the following
relations:

Jmns z; hð Þ ¼ dn0ds0Fm0 z; hð Þ ð36Þ

Ji
mns z; hð Þ ¼ 1

ffiffiffi
3
p dn1dsi Fm;�1 z; hð Þ þ hFm0 z; hð Þ


 �
ð37Þ

Jii
mns z; hð Þ ¼ 1

ffiffiffi
5
p dn2 1þ di0ð Þ �1ð Þids0 þ i

ffiffiffi
3
p

ds2

h i

� Fm;�2 z; hð Þ þ hFm;�1 z; hð Þ þ h2

3
Fm0 z; hð Þ

� �

þdn0ds0
h2

3
Fm0 z; hð Þ � 2

3
z3=2dm1dn0ds0 ð38Þ
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and for i 6¼j

Jij
mns z; hð Þ ¼ 1

ffiffiffiffiffi
15
p dn2dss

� Fm;�2 z; hð Þ þ hFm;�1 z; hð Þ þ h2

3
Fm0 z; hð Þ

� �

ð39Þ
where s is the above-mentioned symbol (see Eq. 15) and

Fmu z; hð Þ ¼ mþ uð Þ!
ffiffiffiffiffiffiffiffiffiffiffi
2mð Þ!

p
zþ hð Þuþ1=2

2z

zþ h

� �mþ1=2

ð40Þ

Now we move on to the evaluation of two-center basic
integrals. For this purpose we use Eq. (19) for the one-
center expansion of potentials in Eqs. (33), (34) and (35).
Then we obtain:

Jmns z; h;~R
� �

¼ lim
N!1

XN

u0¼1

baN
00;u00 h; zð ÞSmns;u000 z; z;~R

� �
ð41Þ

Ji
mns z; h;~R
� �

¼ lim
N!1

XN

u0¼1

baN
00;u00 h; zð ÞSi

mns;u000 z; z;~R
� �

ð42Þ

Jij
mns z; h;~R
� �

¼ lim
N!1

XN

u0¼1

baN
00;u00 h; zð ÞSij

mns;u000
z; z;~R
� �

�dij

ffiffiffiffiffi
4p
p

3
c�mns z;~Rab

� �
ð43Þ

The overlap integrals with the same screening param-
eters and derivatives contained in these equations are
defined by

Smns;u000 z; z;~R
� �

¼
Z

c�mns z;~ra1ð Þcu000 z;~rb1ð Þ dV1 ð44Þ

Si
mns;u000 z; z;~R

� �
¼ @

@Xi
Smns;u000 z; z;~R

� �
ð45Þ

Sij
mns;u000

z; z;~R
� �

¼ @2

@Xi@Xj
Smns;u000 z; z;~R

� �
ð46Þ

The overlap integrals with the same screening param-
eters are determined by [31]

Smns;u000 z; z; R
!� 	

¼
Xmþu0þ1

N¼nþ1

gaNns
mns;u0002N 2nþ 1ð Þ= 2Nð Þ!½ �1=2 zRð ÞN�1e�zR

" #

�S�ns q;jð Þ ð47Þ

gaNns
mns;u000 ¼

Xmþu0þ1

N0¼nþ1

Wan
NN0 mþ u0 þ 1ð ÞQN0�a n

mn;u00 ð48Þ

See [31] for the exact definitions of the quantities Wan

and QNn.

Use of screening noncentral potentials
in evaluation of two-center basic integrals

As can be seen from Eq. (47), for the calculation of two-
center basic EF and EFG integrals, Eqs. (45) and (46), we
need the derivatives of the function

Fns z;~R
� �

¼ Mns X; Y ; Zð Þf Rð Þ ð49Þ
where R=(X2+Y 2+Z 2)1/2 and

Mns X; Y ; Zð Þ ¼ Rn�Sns q; jð Þ ð50Þ

f Rð Þ ¼ RN�n�1e�zR ð51Þ
In order to obtain the derivatives of the function

Fns z;~R
� �

, we use the following formulae for the deriva-
tives of a product of the functions Mns(X,Y,Z)and f(R):

@ Mnsfð Þ
@Xi

¼ @Mns

@Xi
f þMnsXi 1

R

@f

@R

� �
ð52Þ

@2 Mnsfð Þ
@Xi@Xj

¼ @2Mns

@Xi@Xj
f þ @Mns

@Xi
Xj 1

R

@f

@R

� �

þ @Mns

@Xj
Xi 1

R

@f

@R

� �

þMns dij
1
R

@f

@R

� �
þ XiXj 1

R

@

@R

1
R

@f

@R

� �� �

ð53Þ
where

@Mns

@Xi
¼

Xn�1

s0¼�ðn�1Þ
ai
ns;s0Mn�1s0 ð54Þ

@2Mns

@Xi@Xj
¼

Xn�2

s0¼� n�2ð Þ
aij
ns;s0Mn�2s0 ð55Þ

and

1
R

@f

@R
¼ N � n� 1ð ÞRN�n�3 � zRN�n�2

 �

e�zR ð56Þ

1
R

@

@R

1
R

@f

@R

� �
¼ N � n� 1ð Þ N � n� 3ð ÞRN�n�5



�z N � n� 1ð ÞRN�n�4 þ z2RN�n�3� e�zR

ð57Þ
Here ai

lm,m0=0 for l=0, aij
lm,m0 = for l=0,1 and

a1
lm;m0 ¼ �

em

2
1þ dm0ð Þ 1� dm;�1

� �
l� mð Þ


�

� l� m� 1ð Þ�1=2dm0;mþ1

� 1� dm0ð Þ 1þ dm1ð Þ lþ mð Þ½

� lþ m� 1ð Þ�1=2dm0;m�1g ð58Þ
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a�1
lm;m0 ¼ �

em

2
1þ dm0ð Þ 1þ dm;�1

� �
l� mð Þ


�

� l� m� 1ð Þ�1=2dm0;�m�1

þ 1� dm0ð Þ 1� dm1ð Þ lþ mð Þ½

� lþ m� 1ð Þ�1=2dm0;�mþ1g ð59Þ

a0
lm;m0 ¼ lþ mð Þ l� mð Þ½ �1=2dm0m for l > 1 ð60Þ

aij
lm;m0 ¼ aji

lm;m0 ¼
Xl�1

m00¼� l�1ð Þ
aj

lm;m00a
i
l�1m00;m0 for l > 2

(61)
where em=sgn m is the sign functions, i.e. em=€1. The sign
of the symbol em is determined by the sign of m, i.e.
em=+1 for m�0and em=�1 for m<0.

Taking into account Eqs. (50), (51), (52), (53), (54),
(55), (56) and (57) in Eq. (47) we find finally for the
overlap integrals with the same screening constants and
other derivatives in terms of noncentral potentials the
following relationships:

Smns;u000 z; z;~R
� �

¼ f 00
mns;u000;ns z; z;~R

� �
ð62Þ

Si
mns;u000 z; z;~R

� �
¼

Xn�1

s0¼� n�1ð Þ
ai
ns;s0 f

10
mns;u000;n�1s0 z; z;~R

� �

þ Xi

R

� �
f 11
mns;u000;ns z; z;~R

� �
ð63Þ

Sij
mns;u000

z; z;~R
� �

¼
Xn�2

s0¼� n�2ð Þ
aij
ns;s0 f

20
mns;u000;n�2s0 z; z;~R

� �

þ
Xn�1

s0¼� n�1ð Þ
ai
ns;s0

Xj

R

� �
þ aj

ns;s0
Xi

R

� �� �

� f 21
mns;u000;n�1s0 z; z;~R

� �

þdijR
2f 21

mns;u000;ns z; z; R
!� 	

þ Xi

R

� �
Xj

R

� �
f 22
mns;u000;ns z; z;~R

� �
ð64Þ

Here, the screening noncentral potentials are deter-
mined as

f tk
mns;u000;us z; z;~R

� �
¼ f tk

mns;u000 z; z;~R
� �

�Su s q; jð Þ ð65Þ

f tk
mns;u000 z; z;~R

� �
¼ f tk

mns;u000;00 z; z;~R
� �

¼ ztþ2k
Xmþu0þ1

N¼nþ1

gaNns
mns;u0002N 2nþ 1ð Þ= 2Nð Þ!½ �1=2

� zRð ÞN�t�2k�1
Xk

s0¼0

bk
s0 N; nð Þ zRð Þs

0
e�zR

(66)

T
ab

le
1

C
om

pa
ri

so
n

of
m

et
ho

ds
of

co
m

pu
ti

ng
E

F
m

ul
ti

ce
nt

er
in

te
gr

al
s

of
sc

re
en

ed
C

ou
lo

m
b

po
te

nt
ia

ls
ob

ta
in

ed
in

th
e

m
ol

ec
ul

ar
co

or
di

na
te

sy
st

em
in

a.
u.

fo
r

N
=

15
,X

0 =
0.

71
89

64
57

,
X

1 =
�

1.
77

05
96

22

n
l

m
z

n0
l0

m
0

z0
h

i
R

ca
q

ca
f

ca
R

ab
q

ab
f

ab
E

q.
(2

8)
,
a=

0
E

q.
(2

8)
,
a=

�
1

C
P

U
(m

s)

1
0

0
2.

8
1

0
0

1.
6

3.
2

0
2.

4
60

90
0.

8
30

45
�

9.
89

24
35

27
51

E
�

03
�

9.
89

24
36

95
06

E
�

03
10

.2
2

1
0

4.
2

2
1

0
6.

1
5.

3
0

0.
5

45
18

0
0.

2
60

30
�

5.
02

58
30

83
16

E
�

01
�

5.
02

58
31

67
18

E
�

01
15

.3
2

1
0

3.
4

2
1

0
1.

1
4.

6
1

1.
8

12
0

20
1.

2
60

60
�

1.
00

44
30

12
69

E
�

02
�

1.
00

44
50

96
45

E
�

02
18

.4
2

1
1

4.
3

2
1

1
2.

1
6.

4
1

0.
8

13
5

36
0

0.
3

12
0

90
�

3.
65

56
98

68
74

E
�

01
�

3.
65

55
99

51
01

E
�

01
25

.7
2

1
�

1
2.

4
2

1
�

1
1.

2
5.

6
1

0.
5

18
0

18
0

1.
3

18
0

36
�

9.
65

58
33

83
74

E
�

03
�

9.
65

58
18

90
82

E
�

03
24

.1

23



where t=0, 1, 2 for EA, EF and EFG integrals, respec-
tively (0�k�t) and b0

0(N,n)=1; b1
0(N,n)=N�n�1,

b1
1(N,n)=�1; b2

0(N,n)=(N�n�1)(N�n�3), b2
1(N,n)=

�(N�n�1), b2
2(N,n)=1.

As can be seen from the equations of this study, all the
multicenter EA, EF and EFG integrals can be calculated
by the use of one-center or two-center expansion
approaches. For this purpose we need only the Cartesian
coordinates of the nuclei relative to a common axial frame
and the quantum numbers and screening constants of the
STOs. We notice that the charge-density expansion
coefficients WaN

pp0q needed for calculation of multicenter
integrals are expressed through the translation coefficients
VaN

qq0, which can be defined by linear combinations of
overlap integrals (see Eq. 22 of [30]).Thus, the compu-
tation of different formulae for any integral obtained by
the use of complete orthonormal sets of y1

nlm, y0
nlm,

y�1
nlm, y�2

nlm,.... ETOs can be reduced to the calculation
of the overlap integrals with the same screening constants.
One must be able to compute these overlap integrals with
sufficient accuracy even for relatively large summation
indices because otherwise convergence cannot be ob-
tained. The numerical aspects of overlap integrals for
large quantum numbers have recently been investigated in
our papers [32].

The results of calculation in atomic units for the EF
multicenter integrals of screened Coulomb potentials
obtained with a Pentium III 800-MHz computer (using
TURBO Pascal 7.0) are shown in Table 1. The compar-
ative values obtained from the expansion of different ya-
ETOs are also shown in this table. We see from the table
that the computation time and accuracy of the computer
results for different expansion formulae obtained from y0-
ETOs and y�1-ETOs are satisfactory.
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